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allel to (111)a between two cubic crystals A and B with 
a misorientation 0 abotlt [011]. Since the axis of mis- 
orientation is a twofold axis of symmetry, rotations of 
angles 0 and (180 ° -  0) are equivalent. Fig. 1 shows, for 
each value of 0 (0 < 0 < 90°), the angles of tilt and twist 
which correspond to the equivalent description involv- 
ing the smallest angle of tilt or twist. The maximum 
deviation from a pure case is 16.9 ° and occurs for 
0=29.5 ° . Pure-tilt boundaries occur for the following 
values of 0: 39.0, 50.5 and 70.5 °. 
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The strength of the coupling of the motions of the atoms in different cells of a crystal is investigated by 
means of the acoustic spectrum of the thermal diffuse scattering. The calculations are performed for a 
monatomic cubic crystal. Correlation coefficients, which express the amount of in-phase motions of 
remote atoms in the crystal, are approximately determined from the term 1/q2 o f  the acoustic spectrum. 
This term is valid for all crystals. We find that the coupling of the motions of the atoms is approximately 
inversely proportional to the distance between the atoms in the crystal. 

1. Introduction 

In the usual lattice-dynamical treatment of the thermal 
motions of the atoms it is assumed that there are forces 
among the atoms in the crystal so that the motions of 
the atoms are coupled. This assumption means that the 
internal motions of a lattice can be represented by a 
superposition of separate running or standing waves 
(in the harmonic approximation). In such a wave all 
atoms move with the same frequency and a phase 
shift which is determined by the wavelength and the 
position of the atom in the crystal. Hence, for such a 
wave a coupling of the motions of even widely sepa- 
rated atoms in the crystal exists. In a crystal with many 
cells there are as many waves which are excited ac- 
cording to the laws of quantum statistics. Because of 
the different wavelengths the superposition of the 
waves in the motions of any particular atom prevents 
a noticeable effect of thermal coupling between widely 
separated atoms in the crystal. This means that in the 
crystal two atoms show a noticeable in-phase (or out- 
of-phase) motion only within a certain distance. Now 
we want to know how large this distance is, or to what 
extent the coupling of the motions of the atoms de- 
creases with increasing distance. 

The interatomic thermal coupling becomes manifest 
in the acoustic spectrum of the thermal diffuse scat- 
tering, which shows sharp maxima at the reciprocal- 
lattice points. Thus it should be possible to draw con- 
clusions about the strength of the interatomic coupling 

from the profile of the acoustic spectrum. Such an 
attempt will be made in this paper. We restrict our 
treatment to a monatomic cubic crystal and only 
discuss the manifest acoustic spectrum of the first 
order. 

2. Derivation of the coupling terms 

The intensity of the first-order acoustic spectrum for a 
monatomic cubic lattice is given by 

I(S/2)=f~ e -zM ~ ~, ~, Gqj exp {2hi S/2 
n m q j  

×(rn--rm) } COS {q. (rn--rm)}, (1) 
where 

aqj=2M; (2) 
qJ 

and for temperatures well above the Debye temperature 

a q j -  mNo)~(q) S.  e(qj) , (3) 

(cf. James, 1948, equations 5.27, 5.23 and 5.25). The 
symbols have the following meaning: 

2 =wavelength of the X-rays, 
S/2=vector in reciprocal space, S =  ISl =2  sin 0, 

f0 = scattering factor for the atom at rest, 
n,m=indices to denote the cell in the crystal; the 

components n~ and m, are integer, 
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rn, rm = vectors from the origin to the cells n, m, referred 
to an orthonormal metric, 

q = wave vector of a lattice wave, 
e(qj) = unit vector of the wave q in the direction j of 

polarization; j =  l, 2, 3, 
coj(q) = circular frequency of mode q j ,  

kB = Boltzmann's constant, 
T=  absolute temperature, 
m =mass of the atoms, 
N =  number of cells (atoms) in the crystal. 

For a monatomic crystal with N1N2Na=N cells 
there are 3N lattice modes qj  and as many first-order 
diffuse maxima in the first Brillouin zone. Since the 
diffuse maxima overlap to a large extent, because of 
their finite line width, the exact values of NI, N2, N3 
do not matter and /1 is often represented as a con- 
tinuous function. Using Iql---q, q=2rcg, and [ g l = g =  
1/2(q) = magnitude of the wave vector g in A -  units, 
Vqj = coj (q)/q = velocity of wave q j, esj = angle between 
S/2 and e(qj), 

we obtain 

where 
I (S /2 )=f  2 e-2Uo • , (4) 

3 
a ~  N 2 ~ Gqj, (5) 

j = l  

which can be shown to be 

kvT  (~__)2 ~ COS20Csj 
v b  ' 

,=1 

(cf. James, 1948, equations 5.36, 5.40, and 5.44). 
Since the lattice waves occur only in the term 

(6) 

~, Gqj cos {q. (ra - rm)} (7) 
qJ 

of equation (1) we conclude that this term accounts 
for the fact that there is thermal coupling between the 
cells (atoms) n and m in the crystal. Thus our investiga- 
tion is first concerned with the expression (7) which we 
denote by Tn-m. We simplify it by carrying out the 
summation over j. With equations (5) and (7) we then 
obtain 

1 
Tn_m = -~-  ~ or(g) cos {2zcg. ( ra - rm)  } . (8) 

g 

According to equation (6) a(g) is a continuous function 
ofg  and therefore we proceed to integration in equation 
(8). For this purpose we need the volume element in g 
space. With a* as the lattice constant of the cubic 
reciprocal lattice the density of points in the g lattice 
is N/a .3, and hence the volume element is Nd3g/a .3. 
Furthermore, with equation (6) a(g)/N does not depend 
on N, the number of cells in the crystal. We put 
a(g)/N = - e(g). With equation (8) we now obtain 

1 IBrillouin e(g) COS.{2zcg. (rn-rm)}d3g. (9) 
T a -  m = a,--J vzon e 

Since Gqj and e(g) are real, Ta_ m is also real. Obviously 

T n _ m - -  T m _ n  (10) 

by virtue of equation (9). In the following we abbrevi- 
ate T a - m -  Tam. 

Now we want to express e(g) as a function of the 
coupling terms Tnm, i.e. we look for the transformation 
inverse to that of equation (9). For this purpose we 
introduce g in equation (1) by using the relation S/2= 
S0/2 + g, where S0/2 is the vector to a reciprocal lattice 
point. Since 

exp {2rci S0/2. (rn --  rm)}  = 1 , 

we now obtain 

exp {27~ i S/2.  (rn-rm)} 
=exp {27~ i g .  ( r . - rm)}  (11) 

for each pair of cells m and n. We divide equation (1) 
b y f  2 e -2M, use Tnm instead of the expression (7) and 
obtain from equation (1) 

o(g) = ~ ~ Tnm exp {27~ i g .  ( r . - r m ) } .  (12) 
n m 

As an intensity a(g) must be real; this is expressed for- 
mally by equation (10). Because of equation (10) a(g) 
is also symmetric with respect to a reciprocal lattice 
point.* If one refers a(g) to the unit cell we obtain by 
virtue of equation (10) 

1 
e(g)= ~ -  ~ ~ Tam cos {27~g. ( r a - rm)} .  (13) 

n Ill 

e(g) only depends on the differences r , -  rm but not on 
the single vectors r .  and rm. For an infinitely large 
lattice, N---> c~, all differences occur with equal fre- 
quency, N times in the limit. If we count each difference 
rn-rm-=Arum only once, and take into account its 
frequency of occurrence, we obtain from equation (13) 

+oo 
~ ( g ) =  ~ Tnm COS {2re g .  /[rnm } 

Arnm = -- eo 

= Tnm cos --a- ¢- zg~ Ant , (14) 
All= - -~  = 

where the An~=n~-rn~ are integers. If we also express 
equation (9) by Aram we obtain 

Tn m -  1 IB~,Xo~ e(g) cos {27~g. Aram}d3g. (15) 
a .3 ,Jzone 

* James (1948, equation 5.44 and p. 211) states that a(g) is 
not centrosymmetric with respect to a reciprocal lattice point 
- in contrast to our result. Our result is a direct consequence of 
our equation (1), whereas James deduces the asymmetry of 
a(g) from his equation (5.44). In deriving (5.44), however, it is 
assumed that S/2 is constant throughout the Brillouin zone 
(integration in equation 5.39). The asymmetry of o'(g) only 
arises when this assumption is dropped. The centrosymmetry 
of o'(g) is also found by Laue (1960, p. 249). 
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Thus we have the following result: The coupling 
terms T,m, referring to two atoms m and n in the crystal, 
are the Fourier  transforms of the intensity of  the 
acoustic spectrum per unit cell, when the fac tor f~e  -zM 
is not taken into account. On the other hand the inten- 
sity per unit cell can be represented by a Fourier series 
in Ar space with the coupling terms T,m as Fourier  
coefficients. Thus e(g) and T,m are real Fourier inverse 
to each other.* 

Al though a Fourier summation occurs in equation 
(14) the intensity distribution e(g) is, of  course, not 
periodic; the summat ion is only a consequence of the 
summation over all cells in equation (1). Rather e(g) is 
not equal at each reciprocal-lattice point (in each 
Brillouin zone) because e(g) also depends on the recip- 
rocal lattice vector S/2, as shown by equation (6). 
Therefore the coupling terms Tam are different for 
each Brillouin zone in reciprocal space. Furthermore,  
since equation (6) is only valid for [S/2[ >~g, our equa- 
tions (14) and (15) also only hold under this condit ion;  
i.e. the Brillouin zones considered should lie far out- 
side in reciprocal space. These restrictions on our 
results cannot be eliminated and they unfortunately 
prevent the coupling terms Tnm, which only describe 
the specific crystal, from being calculated from the 
acoustic spectrum in a direct manner.  

In order to control our previous calculations we now 
show, by comparison with the known equations for 
uncoupled motions of the atoms in the crystal, that the 
quantities Tnm have their origin in the coupling of the 
motions. For  uncoupled motions the intensity of the 
thermal background is given by 

I. = fZoN( l - e -aM) 
= f ~ e - Z M N { Z M + ½ ( 2 M )  z+ . . . } ,  (16) 

(of. James, 1948, equation 1-35). The first term in the 
series expansion corresponds to the first-order acoustic 
spectrum. Hence, for uncoupled motions, we have 
from the first term 

e.(g) = I . ( ls t  t e r m ) / f ~ e - Z ~ t N = Z M .  (17) 

In our notat ion no coupling means Tnm=0 for all 

* This relation has an obvious parallel. The equations (14) 
and (15) correspond to the equations for the Fourier synthesis 
of the electron-density distribution with positive and real 
coefficients. Equation (10) corresponds to Friedel's law. 
Formally the roles of direct and reciprocal space are exchanged 
however: in equation (15) we integrate the cell contents e(g), 
multiplied with a phase factor, over the unit cell in reciprocal 
space in order to gain the 'structure amplitude' T,,m which 
occurs in direct space. On the other hand, the Fourier summa- 
tion (14) is carried out in reciprocal space with the coefficients 
Tnm of direct space. A further difference with respect to the 
Fourier representation of the electron density consists of the 
fact that in equation (15) the integration is performed over 
intensities and not over amplitudes. Thus the coefficients Tam 
represent the maxima of a 'squared crystal' (el. Buerger, 
1959). But the maxima Tnm differ from the maxima of a 
Patterson synthesis in that they do not refer to the interatomic 
vectors within the unit cell but rather to those within the lattice, 
and in that the interatomic vectors all have the same multi- 
plicity (in an infinitely large crystal). 

n-¢ m and T, , -¢  0. The terms with n = m denote the 
coupling of one and the same atom, which we abbrevi- 
ate by To. From equation (15) we obtain 

To = -a~31Bri,,ouin e.(g )d3g . (18) 
Z O n e  

From equation (18) we deduce that T0=2M.  which is 
established from the equations (2), (5) and (18) as fol- 
lows: 

2 M =  ~ G , j =  ~ a(g) /N 2 
qJ g 

a ,  3 Brillouin cr(g)/NEdag = To. 
t Z O n e  

First we show that, with To = 2M and Tnm = 0 for n ~ m, 
our equations yield the result (17) for uncoupled 
motions:  If we insert Tam = 0 and To = 2M in equation 
(13) we obtain 

1 
e ( g ) :  ~ r  ~ 2 M : 2 M ,  

which is identical with the result (17). On the other 
hand, if we insert e ( g ) = 2 M  in equation (15) we obtain 
T 0 = 2 M  and Tnm=0 for h e m .  Hence Tam-C0 is a 
necessary and sufficient condition for the coupling of 
the motions of different atoms in the crystal. 

3. Calculation of correlation coefficients 

Since the coupling terms Tnm depend on the choice of  
the reciprocal lattice point considered, i.e. on S/2, our 
equations do not allow one to calculate values of  Tnm 
which describe only the particular crystal. We can 
improve the situation by calculating average values; 
the average being taken either over all vectors S/2 or 
over the squared velocities V~j of the lattice modes. In 
the first case the terms cos 2 cqj in equation (6) become 
approximately ½ because of Z cosZ esj = 1, and one can 
perfoma the calculation with different velocities of  
sound (or with different elastic constants). The advan- 
tage of this type of calculation is that the part icular 
properties of  the crystal are taken into account. In the 
second case, with an average velocity of sound, the 
dependence on S/2 vanishes, since ~ cos z ~sj = 1 for all 
vectors S/2, but some of the specific properties of  the 
crystal are lost. One obtains an acoustic spectrum ac- 
cording to 

C 
~(g)= g 2 ,  (19) 

where C is a constant, which depends only on the 
magnitude of  S/2, the mass of  the atoms, the tem- 
perature and the average velocity of sound, cf. equa- 
tion (6). The simple spectrum, according to equation 
(19) has the advantage that we can approximately cal- 
culate the coupling terms T,m, as follows. 

We regard the Brillouin zone as a sphere about  the 
reciprocal lattice point (in reality it is a cube for a 
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cubic lattice), introduce polar coordinates and obtain 
with equations (15) and (19) 

Tnm__ C4rc I gmax _Si_ n (2~g A_r_,,,~)dg, (20) 
a . 3  ~,o 2re g ZJrnm 

(c f  International Tables for  X-ray Crystallography, 
1959, p. 73): g and Ar, m are referred only to the radial 
direction of the sphere. The value Ofgmax is determined 
from the condition that the volume of the cubic and 
spherical forms of the Brillouin zone should be equal. 
We obtain gmax = 0.620 a* •-1. To a sufficient approxi- 
mation we assume that a and a* can also be regarded 
as 'lattice constants' in the radial direction. Then Ar, m 
has the values (0, 1 , 2 . . . )  a. The integration in equa- 
tion (20) can now be carried out and we find 

C 4zr 
T,,,, = a .  3 2re Ar,m Si(2rc Ar, m 0"620a*), (21) 

where the function Si(x) represents the sine integral. 
Values of Si(x) are given in the tables of Abramowitz 
& Stegun (1965, p. 227). For Ar, m=a we obtain Si(2rc 
0.620) = 1.776, which comes already close to the limit 
of rc/2=1.571, to which Si(x) converges quickly for 
values of Ar, m > 5a. For Arm, = 0 we immediately obtain 
from equation (20) 

To = C 4re 0.620/a *z . (22) 

Hence the correlation coefficients are 

V,m= - T,m __ Si(2zc Ar, m 0"620 a*) (23) 
To 2re Arnm 0.620a* ' 

with V0 = 1. If we insert the lilrfit zc/2 for the sine 
integral and use gmax=½, which is somewhat too small, 
we obtain the even members of the harmonic series 

V.m 1 _1_ J_ ± (24) 
= x ,  2 , 4 , 6  , • . . 

when dr,,,, attains the values (0,1,2, 3 , . . . )  a. The cor- 
relation coefficients are always positive, which means 
that the atoms move primarily with similar phases. 
This result is reasonable since the long acoustic waves 
are more excited in thermal equilibrium than the short 
ones and thus primarily determine the phases. Ac- 
cording to equations (23) and (24) the coupling of the 
motions of the atoms in the crystal decreases com- 
paratively slowly, more or less inversely proportional 
to their distance. This slow decrease of the interatomic 
coupling is, however, remarkable since the interatomic 
forces normally decrease rapidly with a high power of 
the interatomic distance. But we can understand this 

result by considering that the coupling terms T,m 
express the gross effect of interatomic coupling, i.e. 
the effect that arises when the coupling between remote 
atoms in the crystal is established through a number of 
nearest-neighbour and other possible interactions. 

Our result (24) satisfies a formal condition which 
must be fulfilled for the uniform convergence of the 
Fourier series of equation (14), (cfi Tolstow, 1955, p. 
91). The coefficients Tnm converge to zero with in- 
creasing Ar,,m. Furthermore, the decrease of the 
coupling terms according to equation (24) justifies an 
(incorrect) assumption which we made in deriving 
equation (14): for finite crystals the differences hrnm 
are less frequent for the larger distances. Since the 
coupling terms for large distances are small, the large 
distances have only a small weight in the series (14) 
and an incorrect assumption about the frequency of 
their occurrence has no marked effect on the result. 

We emphasize that our results (21) and (24) are 
derived only from the characteristic factor 1/g 2 of the 
acoustic spectrum. Hence these equations are approxi- 
mately valid for all crystals. How well the strength of 
the interatomic coupling for a particular crystal is repre- 
sented by the equations (21) and (24) depends on how 
much the velocities of sound deviate from each other 
in the different directions of space. If one wants to 
obtain more exact results for a particular crystal one 
has to carry out the calculations with the actual velo- 
cities of sound and for several reciprocal-lattice points 
(with large values of S/2). This leads to complicated 
three-dimensional Fourier transformations. We be- 
lieve, however, that, with our simple calculation, we 
have determined the basic trend of the coupling of the 
thermal motions of the atoms in the crystal as a func- 
tion of increasing distance. 

References 

ABRAMOWlTZ, M. & STEGUN, I. A. (1965). Handbook of 
Mathematical Functions. New York: Dover. 

BUERGER, M. J. (1959). Vector Space. New York, London: 
Wiley. 

International Tables for X-ray Crystallography (1959). Vol. 
II. Birmingham: Kynoch Press. 

JAMES, R. W. (1948). The Optical Principles of the Diffrac- 
tion of X-Rays. London: Bell. 

LAUE, M. YON (1960). R6ntgenstrahlinterferenzen. Frank- 
furt a.M.: Akad. Verlag. 

TOLSTOW, G. P. (1955). Fourierreihen. Berlin: VEB Deutsch. 
Verlag. Wiss. 


